\(\int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx\) [1197]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 91 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx=-\frac {\sqrt {a+b x+c x^2}}{4 c d^3 (b+2 c x)^2}+\frac {\arctan \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{8 c^{3/2} \sqrt {b^2-4 a c} d^3} \]

[Out]

1/8*arctan(2*c^(1/2)*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)^(1/2))/c^(3/2)/d^3/(-4*a*c+b^2)^(1/2)-1/4*(c*x^2+b*x+a)^
(1/2)/c/d^3/(2*c*x+b)^2

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {698, 702, 211} \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx=\frac {\arctan \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{8 c^{3/2} d^3 \sqrt {b^2-4 a c}}-\frac {\sqrt {a+b x+c x^2}}{4 c d^3 (b+2 c x)^2} \]

[In]

Int[Sqrt[a + b*x + c*x^2]/(b*d + 2*c*d*x)^3,x]

[Out]

-1/4*Sqrt[a + b*x + c*x^2]/(c*d^3*(b + 2*c*x)^2) + ArcTan[(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c]]
/(8*c^(3/2)*Sqrt[b^2 - 4*a*c]*d^3)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 698

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 1))), x] - Dist[b*(p/(d*e*(m + 1))), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1
), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] &&
 GtQ[p, 0] && LtQ[m, -1] &&  !(IntegerQ[m/2] && LtQ[m + 2*p + 3, 0]) && IntegerQ[2*p]

Rule 702

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[4*c, Subst[Int[1/(b^2*e
 - 4*a*c*e + 4*c*e*x^2), x], x, Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0]
 && EqQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {a+b x+c x^2}}{4 c d^3 (b+2 c x)^2}+\frac {\int \frac {1}{(b d+2 c d x) \sqrt {a+b x+c x^2}} \, dx}{8 c d^2} \\ & = -\frac {\sqrt {a+b x+c x^2}}{4 c d^3 (b+2 c x)^2}+\frac {\text {Subst}\left (\int \frac {1}{2 b^2 c d-8 a c^2 d+8 c^2 d x^2} \, dx,x,\sqrt {a+b x+c x^2}\right )}{2 d^2} \\ & = -\frac {\sqrt {a+b x+c x^2}}{4 c d^3 (b+2 c x)^2}+\frac {\tan ^{-1}\left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{8 c^{3/2} \sqrt {b^2-4 a c} d^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 10.23 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.13 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx=\frac {-\frac {2 c (a+x (b+c x))}{(b+2 c x)^2}-\sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}} \text {arctanh}\left (2 \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}}\right )}{8 c^2 d^3 \sqrt {a+x (b+c x)}} \]

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(b*d + 2*c*d*x)^3,x]

[Out]

((-2*c*(a + x*(b + c*x)))/(b + 2*c*x)^2 - Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]*ArcTanh[2*Sqrt[(c*(a + x*
(b + c*x)))/(-b^2 + 4*a*c)]])/(8*c^2*d^3*Sqrt[a + x*(b + c*x)])

Maple [A] (verified)

Time = 2.48 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.98

method result size
pseudoelliptic \(\frac {-\frac {\sqrt {c \,x^{2}+b x +a}}{4 c^{2} x^{2}+4 b c x +b^{2}}-\frac {\operatorname {arctanh}\left (\frac {2 c \sqrt {c \,x^{2}+b x +a}}{\sqrt {c \left (4 a c -b^{2}\right )}}\right )}{2 \sqrt {c \left (4 a c -b^{2}\right )}}}{4 c \,d^{3}}\) \(89\)
default \(\frac {-\frac {2 c \left (\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}\right )^{\frac {3}{2}}}{\left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )^{2}}+\frac {2 c^{2} \left (\frac {\sqrt {4 \left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{c}}}{2}-\frac {\left (4 a c -b^{2}\right ) \ln \left (\frac {\frac {4 a c -b^{2}}{2 c}+\frac {\sqrt {\frac {4 a c -b^{2}}{c}}\, \sqrt {4 \left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{c}}}{2}}{x +\frac {b}{2 c}}\right )}{2 c \sqrt {\frac {4 a c -b^{2}}{c}}}\right )}{4 a c -b^{2}}}{8 d^{3} c^{3}}\) \(222\)

[In]

int((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^3,x,method=_RETURNVERBOSE)

[Out]

1/4/c*(-(c*x^2+b*x+a)^(1/2)/(4*c^2*x^2+4*b*c*x+b^2)-1/2/(c*(4*a*c-b^2))^(1/2)*arctanh(2*c*(c*x^2+b*x+a)^(1/2)/
(c*(4*a*c-b^2))^(1/2)))/d^3

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 174 vs. \(2 (75) = 150\).

Time = 0.51 (sec) , antiderivative size = 378, normalized size of antiderivative = 4.15 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx=\left [-\frac {{\left (4 \, c^{2} x^{2} + 4 \, b c x + b^{2}\right )} \sqrt {-b^{2} c + 4 \, a c^{2}} \log \left (-\frac {4 \, c^{2} x^{2} + 4 \, b c x - b^{2} + 8 \, a c - 4 \, \sqrt {-b^{2} c + 4 \, a c^{2}} \sqrt {c x^{2} + b x + a}}{4 \, c^{2} x^{2} + 4 \, b c x + b^{2}}\right ) + 4 \, {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {c x^{2} + b x + a}}{16 \, {\left (4 \, {\left (b^{2} c^{4} - 4 \, a c^{5}\right )} d^{3} x^{2} + 4 \, {\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} d^{3} x + {\left (b^{4} c^{2} - 4 \, a b^{2} c^{3}\right )} d^{3}\right )}}, -\frac {{\left (4 \, c^{2} x^{2} + 4 \, b c x + b^{2}\right )} \sqrt {b^{2} c - 4 \, a c^{2}} \arctan \left (\frac {\sqrt {b^{2} c - 4 \, a c^{2}} \sqrt {c x^{2} + b x + a}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + 2 \, {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {c x^{2} + b x + a}}{8 \, {\left (4 \, {\left (b^{2} c^{4} - 4 \, a c^{5}\right )} d^{3} x^{2} + 4 \, {\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} d^{3} x + {\left (b^{4} c^{2} - 4 \, a b^{2} c^{3}\right )} d^{3}\right )}}\right ] \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^3,x, algorithm="fricas")

[Out]

[-1/16*((4*c^2*x^2 + 4*b*c*x + b^2)*sqrt(-b^2*c + 4*a*c^2)*log(-(4*c^2*x^2 + 4*b*c*x - b^2 + 8*a*c - 4*sqrt(-b
^2*c + 4*a*c^2)*sqrt(c*x^2 + b*x + a))/(4*c^2*x^2 + 4*b*c*x + b^2)) + 4*(b^2*c - 4*a*c^2)*sqrt(c*x^2 + b*x + a
))/(4*(b^2*c^4 - 4*a*c^5)*d^3*x^2 + 4*(b^3*c^3 - 4*a*b*c^4)*d^3*x + (b^4*c^2 - 4*a*b^2*c^3)*d^3), -1/8*((4*c^2
*x^2 + 4*b*c*x + b^2)*sqrt(b^2*c - 4*a*c^2)*arctan(1/2*sqrt(b^2*c - 4*a*c^2)*sqrt(c*x^2 + b*x + a)/(c^2*x^2 +
b*c*x + a*c)) + 2*(b^2*c - 4*a*c^2)*sqrt(c*x^2 + b*x + a))/(4*(b^2*c^4 - 4*a*c^5)*d^3*x^2 + 4*(b^3*c^3 - 4*a*b
*c^4)*d^3*x + (b^4*c^2 - 4*a*b^2*c^3)*d^3)]

Sympy [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx=\frac {\int \frac {\sqrt {a + b x + c x^{2}}}{b^{3} + 6 b^{2} c x + 12 b c^{2} x^{2} + 8 c^{3} x^{3}}\, dx}{d^{3}} \]

[In]

integrate((c*x**2+b*x+a)**(1/2)/(2*c*d*x+b*d)**3,x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/(b**3 + 6*b**2*c*x + 12*b*c**2*x**2 + 8*c**3*x**3), x)/d**3

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 246 vs. \(2 (75) = 150\).

Time = 0.31 (sec) , antiderivative size = 246, normalized size of antiderivative = 2.70 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx=\frac {\arctan \left (-\frac {2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} c + b \sqrt {c}}{\sqrt {b^{2} c - 4 \, a c^{2}}}\right )}{4 \, \sqrt {b^{2} c - 4 \, a c^{2}} c d^{3}} + \frac {2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} c + 3 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} b \sqrt {c} + {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} b^{2} + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a c + a b \sqrt {c}}{4 \, {\left (2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} c + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} b \sqrt {c} + b^{2} - 2 \, a c\right )}^{2} c d^{3}} \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^3,x, algorithm="giac")

[Out]

1/4*arctan(-(2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*c + b*sqrt(c))/sqrt(b^2*c - 4*a*c^2))/(sqrt(b^2*c - 4*a*c^2
)*c*d^3) + 1/4*(2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*c + 3*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*b*sqrt(c)
+ (sqrt(c)*x - sqrt(c*x^2 + b*x + a))*b^2 + 2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a*c + a*b*sqrt(c))/((2*(sqrt
(c)*x - sqrt(c*x^2 + b*x + a))^2*c + 2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*b*sqrt(c) + b^2 - 2*a*c)^2*c*d^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^3} \, dx=\int \frac {\sqrt {c\,x^2+b\,x+a}}{{\left (b\,d+2\,c\,d\,x\right )}^3} \,d x \]

[In]

int((a + b*x + c*x^2)^(1/2)/(b*d + 2*c*d*x)^3,x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(b*d + 2*c*d*x)^3, x)